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Abstract
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The search for the Higgs boson has become the holy grail of all particle accel-
erators. In the simplest version of the electroweak theory, the Higgs boson serves
both to give the W and Z bosons their masses and to give the fermions mass. It is
thus a vital part of the theory. In these lectures, we will introduce the Higgs boson
of the Standard Model of electroweak interactions.[1] We discuss the production of
the Higgs boson in both e+e− collisions and hadronic interactions and survey search
techniques in the various Higgs mass ranges.[2]

Section 1 contains a derivation of the Higgs mechanism, with particular emphasis
on the choice of gauge. In Section 2 we discuss Higgs production in e+e− collisions
and describe the current LEP bounds on the Higgs mass. Hadronic production of
the Higgs boson through gluon fusion and potential discovery channels at the LHC
are the subjects of Section 3. Section 4 contains a derivation of the effective W
approximation and a discussion of Higgs production through vector boson fusion at
the LHC.

Suppose the Higgs boson is not discovered in an e+e− collider or at the LHC? Does
this mean the Standard Model with a Higgs boson must be abandoned? In Section
5, we discuss the implications of a very heavy Higgs boson, (MH >> 700 GeV ).
Finally, in Section 6, we present indirect limits on the Higgs boson mass from triviality
arguments, vacuum stability and precision e+e− measurements. Section 7 contains
a list of some of the objections which many theorists have to the minimal standard
model with a single Higgs boson. One of the most popular alternatives to the minimal
Standard Model is to make the theory supersymmetric, which is discussed in Section
8. We present a lightning review of those aspects of supersymmetric theories which
are relevant for Higgs boson phenomenology. We end with some conclusions in Section
9.

1 The Higgs Mechanism

1.1 Abelian Higgs Model

The central question of electroweak physics is :“Why are the W and Z boson masses
non-zero?”. The measured values, MW = 80 GeV and MZ = 91 GeV are far from
zero and cannot be considered as small effects. To see that this is a problem, we
consider a U(1) gauge theory with a single gauge field, the photon. The Lagrangian
is simply[3]

L = −
1

4
FµνF

µν , (1)

where
Fµν = ∂νAµ − ∂µAν . (2)

The statement of local U(1) gauge invariance is that the Lagrangian is invariant under
the transformation:Aµ(x)→ Aµ(x) − ∂µη(x) for any η. Suppose we now add a mass
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term to the Lagrangian,

L = −
1

4
FµνF

µν +
1

2
m2AµA

µ. (3)

It is easy to see that the mass term violates the local gauge invariance. Hence it is
gauge invariance that requires the photon to be massless.

We can extend the model by adding a single complex scalar field,

φ ≡
1
√

2
(φ1 + iφ2). (4)

The Lagrangian is now,

L = −
1

4
FµνF

µν+ | Dµφ |
2 −V (φ), (5)

where

Dµ = ∂µ − ieAµ
V (φ) = µ2 | φ |2 +λ(| φ |2)2. (6)

V (φ) is the most general renormalizable potential allowed by the U(1) invariance.
This Lagrangian is invariant under U(1) rotations, φ→ eiθφ and under local gauge

transformations:

Aµ(x) → Aµ(x)− ∂µη(x)

φ(x) → e−ieη(x)φ(x). (7)

(8)

There are two possibilities for the theory.1 If µ2 > 0 then the potential has the
shape shown in Fig. 1 and preserves the symmetry of the Lagrangian. The state of
lowest energy is that with φ = 0, the vacuum state. The theory is simply quantum
electrodynamics with a massless photon and a charged scalar field φ with mass µ.

The alternative scenario is more interesting. In this case µ2 < 0 and the potential
can be written as

V (φ) = − | µ |2| φ |2 +λ(| φ |2)2, (9)

which has the Mexican hat shape shown in Fig. 2. In this case the minimum energy
state is not at φ = 0 but rather at

〈φ〉 =

√
−
µ2

2λ
. (10)

〈φ〉 is called the vacuum expectation value (VEV) of φ. Note that the direction in
which the vacuum is chosen is arbitrary, but it is conventional to choose it to lie along
the direction of the real part of φ as shown in Fig. 2. It is convenient to write φ as

φ ≡
1
√

2
ei
χ
v

(
v +H

)
, (11)

1We assume λ > 0.
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where χ and H are real fields which have no VEVs. If we substitute Eq. 11 back into
the original Lagrangian we find the interactions in terms of the fields with no VEVs,

L = −
1

4
FµνF

µν − evAµ∂
µχ+

e2v2

2
AµA

µ

+
1

2

(
∂µH∂

µH + 2µ2H2
)

+
1

2
∂µχ∂

µχ

+(H, χ interactions). (12)

Eq. 12 describes a theory with a photon of mass MA = ev, a scalar field H with
mass-squared −2µ2 > 0, and a massless scalar field χ. The mixed χ− A propagator
is confusing however. This term can be removed by making a gauge transformation:

A′µ ≡ Aµ −
1

ev
∂µχ. (13)

After making the gauge transformation of Eq. 13 the χ field disappears from the
theory and we say that it has been “eaten” to give the photon mass. The χ field is
often called a Goldstone boson.[4] In the gauge of Eq. 13 the particle content of the
theory is apparent; a massive photon and a scalar field H. The field H is called a Higgs
boson. The Higgs mechanism can be summarized by saying that the spontaneous
breaking of a gauge theory by a non-zero VEV results in the disappearance of a
Goldstone boson and its transformation into the longitudinal component of a massive
gauge boson.

It is instructive to count the degrees of freedom (dof). Before the spontaneous
symmetry breaking there was a massless photon (2 dof) and a complex scalar field (2
dof) for a total of 4 degrees of freedom.2 After the spontaneous symmetry breaking
there is a massive photon (3 dof) and a real scalar, H, (1 dof) for the same total
degrees of freedom.

At this point let us make an aside about the gauge dependance of these results.
The gauge choice above with the transformation A′µ = Aµ −

1
ev
∂µχ is called the

unitary gauge. This gauge has the advantage that the particle spectrum is obvious
and there is no χ field. The unitary gauge however has the disadvantage that the
vector propagator, ∆µν(k), has bad high energy behaviour,

∆µν(k) = −
i

k2 −M2
A

(
gµν −

kµkν

M2
A

)
. (14)

In the unitary gauge, scattering cross sections have contributions which grow with
powers of k2 (such as k4, k6, etc.) which cannot be removed by the conventional mass,
coupling constant, and wavefunction renormalizations. More convenient gauges are
the so-called Rξ gauges which are obtained by adding the gauge fixing term to the
Lagrangian,[5]

LGF = −
1

2ξ

(
∂µA

µ + ξevχ

)2

. (15)

2Massless gauge fields have 2 transverse degrees of freedom, while a massive gauge field has an
additional longitudinal degree of freedom.
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Different choices for ξ correspond to different gauges. In the limit ξ →∞ the unitary
gauge is recovered. Note that the cross term in Eq. 15 cancels the mixed χ∂µA

µ

term of Eq. 12. The gauge boson propagator in Rξ gauge is given by

∆µν(k) = −
i

k2 −M2
A

(
gµν −

(1− ξ)kµkν
k2 − ξM2

A

)
. (16)

In the Rξ gauges the χ field is part of the spectrum and has mass M2
χ = ξM2

A.
Feynman gauge corresponds to the choice ξ = 1 and has massive Goldstone bosons,
while Landau gauge has ξ = 0 and massless Goldstone bosons with no coupling to the
physical Higgs boson. The Landau gauge is often the most convenient for calculations
involving the Higgs boson since there is no coupling to the unphysical χ field.

1.2 Weinberg-Salam Model

It is now straightforward to obtain the usual Weinberg-Salam model of electroweak
interactions.[6] Here we present a quick overview of the model with emphasis on
those aspects relevant for Higgs physics. Further details can be found in the lectures
of Peccei at this school.[7] The Weinberg- Salam model is an SU(2)L × U(1)Y gauge
theory containing 3 SU(2) gauge bosons, W i

µ, and one U(1) gauge boson, Bµ, with a
kinetic energy term,

LKE = −
1

4
W i
µνW

µνi −
1

4
BµνB

µν (17)

where

W i
µν = ∂νW

i
µ − ∂µW

i
ν + gεijkW j

µW
k
ν

Bµν = ∂νBµ − ∂µBν . (18)

Coupled to the gauge fields is a complex scalar doublet

Φ =
1
√

2

(
φ1 + iφ2

H + iφ0

)
, (19)

with a scalar potential is given by

V (Φ) = µ2 | Φ†Φ | +λ
(
| Φ†Φ |

)2

, (20)

(λ > 0). This is the most general renormalizable and SU(2) invariant potential
allowed.

Just as in the Abelian model of Section 1.1, the state of minimum energy for
µ2 < 0 is not at 0 and the scalar field develops a VEV. The direction of the minimum
in SU(2)L space is not determined since the potential depends only on Φ†Φ = 1

2
(φ2

1 +
φ2

2 +H2 + φ2
0) and we choose

〈Φ〉 =
1
√

2

(
0
v

)
. (21)
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With this choice the scalar doublet has U(1)Y charge (hypercharge) YΦ = 1 and the
electromagnetic charge is Q = T3 + Y

2
. Therefore,

Q〈Φ〉 = 0 (22)

and electromagnetism is unbroken by the scalar VEV. The VEV of Eq. 21 hence
yields the desired symmetry breaking scheme, SU(2)L × U(1)Y → U(1)EM .

It is now straightforward to see how the Higgs mechanism generates mass for the
W and Z gauge bosons. The contribution of the scalar fields to the Lagrangian is,

Ls = (DµΦ)†(DµΦ)− V (Φ) (23)

where3

Dµ = ∂µ + i
g

2
τ ·Wµ + i

g′

2
Bµ. (24)

In unitary gauge the scalar field can be written as

Φ =
1
√

2

(
0

v +H

)
(25)

which gives the contribution to the gauge boson masses from the scalar kinetic energy
term,

1

2
(0 v)

(
1

2
gτ ·Wµ +

1

2
g′Bµ

)2
(

0
v

)
. (26)

Hence the gauge fields obtain a mass from the Higgs mechanism:

W±
µ =

1
√

2
(W 1

µ ∓ iW
2
µ)

Zµ =
−g′Bµ + gW 3

µ√
g2 + g′ 2

Aµ =
gBµ + g′W 3

µ√
g2 + g′ 2

. (27)

The coupling constants satisfy the usual relations,

e = g sin θW

e = g′ cos θW (28)

and the masses are given by

M2
W =

1

4
g2v2

M2
Z =

1

4
(g2 + g′ 2)v2

Mγ = 0. (29)

3The τi are the Pauli matrices with Tr(τiτj) = 2δij. Different choices for the gauge kinetic energy
and the covariant derivative depend on whether g and g′ are chosen positive or negative. There is
no physical consequence of this choice.
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It is again instructive to count the degrees of freedom after the spontaneous symmetry
breaking has occurred. We began with a complex scalar field Φ with four degrees of
freedom, a massless SU(2) gauge field, Wi, with six degrees of freedom and a massless
U(1) gauge field, B, with 2 degrees of freedom for a total of 12. After the spontaneous
symmetry breaking there remains a physical real scalar field H (1 degree of freedom),
massive W and Z fields (9 degrees of freedom), and a massless photon (2 degrees of
freedom). We say that the scalar degrees of freedom have been “eaten” to give the
W and Z gauge bosons their longitudinal components.

Just as in the case of the Abelian Higgs model, if we go to a gauge other than
unitary gauge, there will be Goldstone bosons in the spectrum and the scalar field
can be written,

Φ =
ei
ω·τ
v

√
2

(
0

v +H

)
. (30)

In the Standard Model, there are three Goldstone bosons, ~ω = (ω±, z), with masses
MW and MZ in the Feynman gauge. These Goldstone bosons will play an important
role in our understanding of the physics of a very heavy Higgs boson, MH > 1 TeV ,
as we will discuss in Section 5.1.

In addition to giving the W and Z bosons their masses, the Higgs boson is also
used to give the fermions mass. The gauge invariant Yukawa coupling of the Higgs
boson to fermions is

Lf = −λdQLΦdR + h.c. , (31)

where the left handed SU(2) fermion doublet is

QL =

(
u
d

)
L

. (32)

This gives the effective coupling

λd
1
√

2
(uL, dL)

(
0

v +H

)
dR + h.c. (33)

which can be seen to yield a mass term for the down quark if we make the identification

λd =
md

√
2

v
. (34)

In order to generate a mass term for the up quark we use the fact that Φc ≡ −iτ2Φ∗

is an SU(2) doublet and we can write the SU(2) invariant coupling

λuQLΦcuR + h.c. (35)

which generates a mass term for the up quark. Similar couplings can be used to
generate mass terms for the charged leptons. For the multi-family case, the Yukawa
couplings, λd and λu, become NF×NF matrices (where NF is the number of families).
Since the mass matrices and Yukawa matrices are proportional, the interactions of
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the Higgs boson with the fermion mass eigenstates are flavor diagonal. That is, the
Higgs boson does not mediate flavor changing interactions.

By expressing the fermion kinetic energy in terms of the gauge boson mass eigen-
states, the charged and neutral weak current interactions can be found. The param-
eter v can be determined from the charged current for µ decay, µ→ eνeνµ, as shown
in Fig. 3. Since the momentum carried by the W boson is of order mµ it can be
neglected in comparison with MW and we make the identification

GF√
2

=
g2

8M2
W

=
1

2v2
, (36)

which gives the result v2 = (
√

2GF )−1 = (246 GeV )2.
One of the most important points about the Higgs mechanism is that all of the

couplings of the Higgs boson to fermions and gauge bosons are completely determined
in terms of coupling constants and fermion masses. The potential of Eq. 20 had two
free parameters, µ and λ. We can trade these for

v2 = −
µ2

2λ
M2

H = 2v2λ. (37)

There are no free adjustable parameters and so Higgs production and decay processes
can be computed unambiguously in terms of the Higgs mass. In Fig. 4 we give a
complete set of Feynman rules for the couplings of the Higgs boson. Note that for
MH >> v, the self couplings of the Higgs boson become strong.

2 Higgs Production in e+e− Colliders

Since the Higgs boson coupling to the electron is very small, ∼ me/v, its dominant
production mechanism in e+e− collisions is the so called “Bjorken Mechanism” shown
in Fig. 5.[8] An estimate of the size of Higgs production can be found from the decay
Z → Hff for a massless Higgs boson:

BR(Z → Hff)

BR(Z → ff)
|MH=0 =

g2

192π2 cos θ2
W

[(
6−

Γ2
Z

2M2
Z

)
log
(

Γ2
Z +M2

Z

Γ2
Z

)

+
12ΓZ
MZ

tan−1
(
MZ

ΓZ

)
−

23

2

]
∼ 10−2, (38)

where ΓZ is the total Z boson decay width. We can see from Eq. 38 that Higgs boson
production in Z decays can never be more than a few percent effect.

The Higgs boson has been searched for in e+e− collisions at the LEP collider,
which has

√
s = MZ . The Higgs is produced through the mechanism of Fig. 5, but

with the final Z off-shell and decaying to a lepton pair. The primary decay mechanism
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used is Z∗ → Hl+l− whose branching ratio is shown in Fig. 6. The decay Z∗ → Hνν

is also useful since the branching ratio is 6 times larger than that of Z → He+e−.
The strategy is to search for each range of Higgs mass separately by looking for the
relevant Higgs decays. For example, a light Higgs boson, MH < 2me , necessarily
decays to 2 photons. For MH ∼ 1 MeV , the Higgs lifetime gives cτ ∼ 103 cm
and so the Higgs boson is long lived and escapes the detector without interacting.
In this case the relevant reaction is e+e− → Z → l+l−H and the signal is l+l−

plus missing energy from the undetected Higgs boson. For each mass region, the
appropriate Higgs decay channels are searched for. When the Higgs becomes heavier
than twice the b quark mass it decays primarily to bb pairs and the signal is then
e+e− → Z → l+l−H → l+l− + jets. By a systematic study of all Higgs boson masses
and decay channels, the LEP experiments have found the limit[9]4

MH > 58 GeV. (39)

Since the LEP experiments have on the order of one million Z’s we see from Fig. 6
that the number of Higgs events expected for higher masses is quite small and this
limit is not expected to be significantly improved by future running.[10]

In the future, LEPII will run at an energy somewhere above
√
s ∼ 175 GeV and

so will look for the process e+e− → ZH shown in Fig. 5. The only difference between
this process and the searches at LEP is that now the final state Z can be on-shell.
The cross section for this process at a center- of- mass energy s is,[11]

σ(e+e− → HZ) =
πα2
√
λ(λ+ 12sM2

Z)[1 + (1− 4 sin2 θW )2]

192s2 sin4 θW cos4 θW (s−M2
Z)2

(40)

where λ ≡ (s−M2
H −M

2
Z)2− 4M2

HM
2
Z . (In the center of mass, the momentum of the

outgoing Z is
√
λ

2
√
s
). From this we can see that the cross section peaks at an energy

√
s ∼ MZ +

√
2MH . This is a very clean production channel with little background

and LEPII is expected to be able to explore the Higgs mass region up to the kinematic
limit, MH <

√
s−MZ ∼ O(80 GeV ).

In Fig. 7, we show the total cross section for e+e− → ZH as a function of
√
s

for fixed MH . If we demand 40 ZH events with Z → e+e− + µ+µ− in 1000 pb−1

to discover the Higgs in this channel, then we require σ > .7 pb which implies that
LEPII will be sensitive to MH < 80 GeV , which is consistent with our estimate that
LEPII will reach the kinematic limit.

3 Higgs Production in Hadronic Collisions

3.1 Gluon Fusion

We turn now to the production of the Higgs boson in pp or pp collisions. Since the
coupling of a Higgs boson to an up quark or a down quark is proportional to the

4Note that there is no region where light Higgs boson masses are allowed. The LEP limits thus
obviate early studies of mechanisms such as K → πH or B → πH.

11



quark mass, this coupling is very small. The primary production mechanism for a
Higgs boson in hadronic collisions is through gluon fusion, gg → H, which is shown
in Fig. 8. The loop contains all quarks with mass m. (In extensions of the standard
model, all massive colored particles run in the loop.) To evaluate the diagram of Fig.
8, we use dimensional regularization in n = 4− 2ε dimensions. For a fermion of mass
m in the loop the amplitude given by the diagram of Fig. 8. is

iA = −(−igs)
2Tr(TATB)

(
−im

v

) ∫
dnk

(2π)n
T µν

D
(i)3εµ(p)εν(q) (41)

where the overall minus sign is due to the closed fermion loop.5 The denominator
is D = (k2 − m2)[(k + p)2 − m2][(k − q)2 − m2]. The usual method of Feynman
parameterization can be used to combine the denominators,

1

ABC
= 2

∫ 1

0
dx
∫ 1−x

0

dy

[Ax+By + C(1− x− y)]3
(42)

and so the denominator becomes,

1

D
→ 2

∫
dx dy

1

[k2 −m2 + 2k · (px− qy)]3
. (43)

Shifting the integration momenta, k′ = k + px− qy, the denominator takes the form

1

D
→ 2

∫
dx dy

1

[k′ 2 −m2 +M2
Hxy]3

. (44)

The numerator of Eq. 41 is also easily evaluated

T µν = Tr
[
(k +m)γµ(k + p+m)(k − q +m)γν)

]
= 4m

[
gµν(m2 − k2 −

M2
H

2
) + 4kµkν + pνqµ

]
(45)

where we have used the fact that for transverse gluons, ε(p) · p = 0 and so terms
proportional to pµ or qν can be dropped. We now shift momenta, drop terms linear
in k′ from the numerator and use the relation∫

dnk′
k′µk′ν

(k′2 − C)m
=

1

n
gµν

∫
dnk′

k′2

(k′2 − C)m
(46)

to write the amplitude in the form

iA = −
2g2

sm
2

v
δAB

∫
dnk′

(2π)n

∫
dxdy

{
gµν

[
m2 + k′2

(
4

n
− 1

)
+M2

H(xy −
1

2
)
]

+pνqµ(1− 4xy)
}

2dxdy

(k′2 −m2 +M2
Hxy)3

εµ(p)εν(q). (47)

5εµ(p) are the transverse gluon polarizations.
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The integral of Eq. 47 can easily be done using the well known formulas of
dimensional regularization[12]∫

dnk′

(2π)n
k′2

(k′2 − C)3
=

i

32π2
(4π)ε

Γ(1 + ε)

ε
(2− ε)C−ε∫

dnk

(2π)n
1

(k′2 − C)3
= −

i

32π2
(4π)εΓ(1 + ε)C−1−ε. (48)

We find the well known result[13]

A(gg → H) = −
αsm

2

πv
δAB

(
gµν

M2
H

2
− pνqµ

) ∫
dxdy

(
1− 4xy

m2 −M2
Hxy

)
εµ(p)εν(q). (49)

(Note that we have multiplied by 2 in Eq. 49 to include the diagram where the gluon
legs are crossed.) The Feynman integral of Eq. 49 can easily be performed to find an
analytic result if desired.

It is particularly interesting to consider the case when the fermion in the loop is
much more massive than the Higgs boson, m >> MH . In this case we find,

A(gg → H) −→m>>MH
−
αs

3πv
δAB

(
gµν

M2
H

2
− pνqµ

)
εµ(p)εν(q). (50)

We see that the production process gg → H is independent of the mass of the heavy
fermion in the loop in the limit m >> MH . Hence it counts the number of heavy
generations and is a window into new physics at scales much above the energy being
probed. This is a contradiction of our intuition that heavy particles should decouple
and not affect the physics at lower energy. The reason the heavy fermions do not
decouple is, of course, because the Higgs boson couples to the fermion mass.[15]

Resonant production of a heavy Higgs can be found from the standard formula:[14]

σ̂(gg → H) =
π2

8M3
H

Γ(H → gg)δ(1−
M2

H

ŝ
). (51)

It is straightforward to obtain our parton level result:

σ̂(gg → H) =
α2
s

64πv2
M2

H | I
(
M2

H

m2

)
|2 δ(ŝ−M2

H) (52)

where
√
ŝ is the energy in the gluon -gluon center of mass and the integral I is defined

by

I(a) ≡
∫ 1

0
dx
∫ 1−x

0
dy

1− 4xy

1− axy
. (53)

In Fig. 9 we plot I(a) and see that it goes quickly to its large a value. Numerically,
the heavy fermion mass limit is an extremely good approximation even for m ∼MH .
From this plot we can also see that the contribution of light quarks to gluon fusion
of the Higgs boson is irrelevant. In fact we have,

I(a) −→a→∞∼ −
1

2a
log2(a). (54)
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Therefore, for the Standard Model, only the top quark is numerically important when
computing Higgs boson production from gluon fusion.

To find the physical cross section we must integrate with the distribution of gluons
in a proton,[22]

σ(pp→ H) =
∫
dx1dx2g(x1)g(x2)σ̂(gg → H), (55)

where g(x) is the distribution of gluons in the proton. Better numerical convergence
is obtained if we make the transformation of variables, x1 ≡

√
τey, x2 ≡

√
τe−y, and

τ ≡M2
H/ŝ. The result is then,

σ(pp→ H) =
α2
s

64πv2
M2

H | I
(
M2

H

m2

)
|2

1

s

dL

dτ
(56)

where the gluon- gluon luminosity is defined

τ

s

dL

dτ
≡

1

s

∫ − log(
√
τ)

log(
√
τ)

dy g

(√
τey

)
g

(√
τe−y

)
. (57)

The gluon-gluon luminosity is shown in Fig. 10 for Tevatron and LHC energies. We
see that the luminosity increases rapidly with energy.

It is straightforward to use the results given above to find the cross section for
Higgs production at the LHC (Large Hadron Collider), a planned pp collider at CERN
with an energy of 14 TeV . We show in Fig. 11 the cross section for producing a Higgs
boson at the LHC. The resonant structure in the figure occurs at MH ∼ 2MT and is
due to the fact that the amplitude for gg → H gets an imaginary part for MH > 2MT ,
as can be seen from the integral of Eq. 53. The planned luminosity at the LHC is
L = 1034/cm2/sec. Hence a cross section of 1 pb corresponds to roughly 105 events
per year, (a theorists year is typically taken to be 107sec/year). In Section 3.3 we
will investigate whether these 105 events are actually observable.

3.2 Low Energy Theorem

A striking feature of our result for Higgs boson production from gluon fusion is that
it is independent of the heavy quark mass for a light Higgs boson. In fact Eq. 50 can
be derived from the effective vertex,[16, 23, 25]

Leff =
αs

12π
GA
µνG

A µν
(
H

v

)
=

βF

gs
GA
µνG

A µν
(
H

2v

)
(1− δ),

where

βF =
g3
sNH

24π2
(58)
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is the contribution of heavy fermion loops to the SU(3) beta function and δ = 2αs/π.6

(NH is the number of heavy fermions with m >> MH .) The effective Lagrangian
of Eq. 58 gives ggH and gggH vertices and can be used to compute the radiative
corrections ofO(α3

s) to gluon production.[16] The correction in principle involve 2-loop
diagrams. However, using the effective vertices from Eq. 58, the O(α3

s) corrections
can be found from a 1-loop calculation.

In Fig.13 we show the radiatively corrected result for Higgs production from gluon
fusion. Several important facts can be seen from this figure. The first is that there is
very little dependance on the top quark mass and hence the heavy fermion mass limit
(where all terms of O(M2

H/M
2
T ) are neglected) is quite accurate. When computing

the lowest order result from the triangle diagram of Fig. 8, such as that shown in
Fig. 11, it is ambiguous whether to use the one or two loop equation for αs and
which structure functions to use, a set fit to data using only the lowest order (in
αs) predictions or a set which includes some higher order effects.[26] The difference
between the equations for αs and the different structure functions is O(α2

s) and hence
higher order in αs when one is computing the “lowest order” result. In Fig.13 we show
2 different definitions of the lowest order result and see that they differ significantly
from each other. It is interesting that the consistent O(α2

s) result (that with one loop
αs and lowest order structure functions) is closest to the radiatively corrected result.
We see that the radiative corrections are large and increase the production rate by
about a factor of 1.5 from the lowest order result.

3.3 Finding the Higgs Boson at the LHC

We turn now to a discussion of search techniques for the Higgs boson at the LHC.
For MH < 800 GeV , gluon fusion is the primary production mechanism, (for MT ∼
170 GeV ). At the present time, there are two large detectors planned for the LHC; the
ATLAS detector[18] and the CMS detector[19]. We will present several results from
preliminary studies of these collaborations on the capabilities of the LHC to discover
the Higgs boson in various decay channels. Detailed discussions of the experimental
problems involved can be found in the collaborations reports.

We have seen that the production rate for the Higgs boson at the LHC is sig-
nificant, σH ∼ .1 − 10 pb for 200 GeV < MH < 1 TeV . However, in order to
see the Higgs boson it must decay into some channel where it is not overwhelmed
by the background. For MH < 2MW the Higgs boson decays predominantly to bb
pairs, (remember that the Higgs coupling to fermions is proportional to the fermion
mass). Unfortunately, the QCD production of b quarks is many orders of magnitude
larger than Higgs production and so this channel is thought to be useless.[17] One is
led to consider rare decay modes of the Higgs boson where the background may be

6The (1 − δ) term arises from a subtlety in the use of the low energy theorem. Since the Higgs
coupling to the heavy fermions is Mf(1 + H

v
)ff , the counterterm for the Higgs Yukawa coupling is

fixed in terms of the renormalization of the fermion mass and wavefunction. The beta function, on
the other hand, is evaluated at q2 = 0. The 1− δ term corrects for this mismatch.[24]
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smaller. The decay channels which have received the most attention are H → γγ and
H → ZZ∗.[20]7 The branching ratios for these decays are shown in Fig. 14 and can be
seen to be quite small. (The rate for off-shell gauge bosons, H → V V ∗, (V = W±, Z)
must be multiplied by the relevant branching ratio, V → f ′f .)

The H → ZZ∗ decay mode can lead to a final state with 4 leptons, 2 of whose
mass reconstructs to MZ while the invariant mass of the 4 lepton system reconstructs
to MH . The largest background to this decay is tt production with t → Wb →
(lν)(clν). There are also backgrounds from Zbb production, ZZ∗ production, etc.
For MH = 150 GeV , the ATLAS collaboration estimates that there will be 184 signal
events and 840 background events in their detector in one year from H → ZZ∗ → (4l)
with the 4-lepton invariant mass in a mass bin within ±2σ of MH .[18] The leptons
from Higgs decay tend to be more isolated from other particles than those coming
from the backgrounds and a series of isolation cuts can be used to reduce the rate
to 92 signal and 38 background events. The ATLAS collaboration claims that they
will be able to discover the Higgs boson in the H → ZZ∗ → l+l−l+l− mode for
130 GeV < MH < 180 GeV with an integrated luminosity of 105pb−1 (one year of
running at the LHC at design luminosity) and using both the electron and muon
signatures. For MH < 130 GeV , there are not enough events since the branching
ratio is too small (see Fig. 14), while for MH > 180 GeV the Higgs search will
proceed via the H → ZZ channel, which we discuss in Section 4.3.

For MH < 130 GeV , the Higgs boson can be searched for through its decay to 2
photons. The branching ratio in this region is about 10−3, so for a Higgs boson with
MH ∼ 100 GeV there will be about 3000 events per year, (σ ∼ 30 pb and the LHC
design luminosity is 1034/cm2/sec.) The Higgs boson decay into the γγ channel is an
extremely narrow resonance in this region with a width around 1 KeV . From Fig. 14
we see that the branching ratio for H → γγ falls off rapidly with increasing MH and
so this decay mode is probably only useful in the region 80 GeV < MH < 130 GeV .8

The irreducible background to H → γγ comes from qq → γγ and gg → γγ and
is shown in Fig. 15. In Fig. 16 we show the signal and the background for a Higgs
boson of mass MH = 110 GeV at the LHC using the ATLAS detector. Extracting
such a narrow signal from the immense background poses a formidable experimental
challenge. The detector must have a mass resolution on the order of δm/m ∼ 1.5%
in order to be able to hope to observe this signal. For MH = 110 GeV there are 1430
signal events and 25, 000 background events in a mass bin equal to the Higgs width.
This leads to a ratio ,

Signal
√

Background
∼ 9. (59)

A ratio greater than 5 is usually defined as a discovery. ATLAS claims that they will
be able to discover the Higgs boson in this channel for 100 GeV < MH < 130 GeV .

7References to the many studies of the decays H → γγ and H → ZZ∗ can be found in Refs.
[18, 19].

8The H → γγ branching ratio is sensitive to the top quark mass. However, unlike the case
gg → H, there are Feynman diagrams with W bosons in the loop which dominate over the top
quark contribution.
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(Below 100 GeV the background is too large and above 130 GeV the event rate is
too small.)

There are many additional difficult experimental problems associated with the
decay channel H → γγ. The most significant of these is the confusion of a photon
with a jet. Since the cross section for producing jets is so much larger than that of
H → γγ the experiment must not mistake a photon for a jet more than one time in
104. It has not yet been demonstrated that this is experimentally feasible.

One might think that the decay H → τ+τ− would be useful since as shown in
Fig. 14 its branching ratio is considerably larger than H → ZZ∗ and H → γγ,
BR(H → τ+τ−) ∼ 3.5% for MH = 110 GeV . The problem is that for the dominant
production mechanism, gg → H, the Higgs boson has no transverse momentum
and so the τ+τ− invariant mass cannot be reconstructed. If we use the production
mechanism, gg → Hg, then the Higgs is produced at large transverse momentum
and it is possible to reconstruct the ττ invariant mass. Unfortunately, however, the
background from qq → τ+τ− and from tt decays overwhelms the signal.[23]

3.4 Higgs Boson Production at the Tevatron

Since it will be some years before the LHC comes into operation it is worth considering
whether any relevant limits on the Higgs boson can be obtained from the existing
hadron collider, the Tevatron, which is a pp collider with an energy

√
s = 1.8 TeV .

For a Higgs boson mass of 60 GeV the production cross section at the Tevatron is
roughly 4 pb. At a luminosity of L ∼ 1031/cm2/sec this yields 400 Higgs events per
year. To look at these events in the γγ decay mode we must multiply by a branching
ratio of 10−3 which leaves .4 Higgs events per year. Even with the main injector,
which will increase the luminosity by about a factor of 10, finding the Higgs boson
through this decay channel is clearly hopeless at the Tevatron.

Recently it has been suggested that it may be fruitful to look for the Higgs boson at
the Tevatron through the production mechanism qq′ →WH, shown in Fig. 17.[27, 28]
The various production mechanisms which are relevant for producing a Higgs boson
at the Tevatron are shown in Fig. 18. The cross section for qq′ → WH is about 1 pb
which gives on the order of 20 events/year if we look at the decays W → eν and
W → µν. Unfortunately, the cuts to eliminate backgrounds make this mechanism
not viable. Potential upgrades to increase either the luminosity or the energy at the
Tevatron may make this a viable option.[27, 28] The WH production mechanism may
also be useful at the LHC to look for a Higgs boson in the MH ∼ 100 GeV region.

4 Higgs Boson Production from Vector Bosons

4.1 The Effective W Approximation

We turn now to the study of the couplings of the Higgs bosons to gauge bosons.
We begin by studying the diagram in Fig. 19. Naively, one expects this diagram
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to give a negligible contribution to Higgs production because of the two W boson
propagators. However, it turns out that this production mechanism can give an
important contribution. The diagram of Fig. 19 can be interpreted in parton model
language as the resonant scattering of two W bosons to form a Higgs boson[31] and
we can compute the distribution of W bosons in a quark in an analogous manner
to the computation of the distribution of photons in an electron.[30] By considering
the W and Z gauge bosons as partons, calculations involving gauge bosons in the
intermediate states can be considerably simplified.

We define orthogonal polarization tensors for a W boson with momentum k =
(k0, 0, 0, | ~k |):

Transverse : ε± =
1
√

2
(0, 1,±i, 0)

Longitudinal : εL =
1

MW

(| ~k |, 0, 0, k0). (60)

For large momentum, k0 >> MW , we have

εL ∼
k

MW

+
MW

2k0
(−1, 0, 0, 1). (61)

The first term in εL gives zero for the coupling of longitudinalW ’s to massless fermions
and so the longitudinal coupling is suppressed by MW/k0 relative to the transverse
coupling to massless fermions. It is instructive to begin by computing the coupling
of a Higgs boson to two longitudinal W bosons, (Fig. 20). The amplitude is given by

A(H → W+
LW

−
L ) = gMW εL(p+) · εL(p−). (62)

Using Eq. 60 we have for MH >> MW ,

A(H →W+
LW

−
L ) =

gM2
H

2MW

. (63)

The longitudinal coupling of the Higgs boson to W bosons is enhanced for heavy
Higgs bosons! It is this fact which makes the process of Fig. 19 relevant.

In order to treat the W± and Z bosons as partons, we consider them as on-shell
physical bosons. We make the approximation that the partons have zero transverse
momentum, which ensures that the longitudinal and transverse projections of the W
and Z partons are uniquely specified. We want to be able to write a parton level
relation ship:

σ(q1 + q2 → q′1 +X) =
∫ 1

MW
E

dxfq/W (x)σ(W + q2 → X). (64)

The function fq/W (x) is called the distribution of W ’s in a quark and it is defined by
Eq. 64.
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The amplitude for a W with polarization vector εi to scatter from a quark q2 to
the final state X (see Fig. 21) is:

iAi(W + q2 → X) = εi · M
√
Eq, (65)

where Eq is the quark energy and we have replaced the W −q2−X vertex by an effec-

tive couplingMµ

√
Eq. Averaging over the quark spin and dropping terms suppressed

by M2
W/E

2, we find

dσ(Wi + q2 → X) =
1

8k0
| εi ·M |

2 dΓX , (66)

where the Lorentz invariant phase space of the final state X is dΓX .
We now consider the two body scattering process of Fig. 22 which gives the

amplitude,

iAi(q1 + q2 → q′1 +X) =
g

2
√

2
u(p′)ε∗i (1− γ5)u(p)ε · M

√
Eq

k2 −M2
W

. (67)

Because of the factor 1/(k2 −M2
W ), the cross section is dominated by small angles

since
k2 ∼ E2(1− x)θ2, (68)

where θ is the angle between the W and the outgoing quark, q′1.
The spin averaged total cross section is then

σi(q1 + q2 → q′1 +X) =
1

32EEq

∫
d3p′

(2π)3

| Ai(q1 + q2 → q′1 +X) |2

E′
dΓX . (69)

The effective W approximation consists of replacing the current, | εi · M |, and the
phase space, dΓX , by their values when k2 →M2

W and the W is emitted in the forward
direction, θ → 0. Using the definition of Eq. 64 and the polarizations of Eq. 60 we
find the W distributions in a quark from Eq. 69,[31]

fLq/W (x) =
g2

8π2

M2
W

E2

1

x

∫
θdθ

(θ2 +
M2
W

E2(1−x)
)2

=
g2

16π2

1− x

x

fTq/W (x) =
g2

64π2x
log
(

4E2

M2
W

)[
1 + (1− x)2

]
, (70)

where we have averaged over the 2 transverse polarizations. The logarithm in Eq. 70
is the same logarithm which appears in the effective photon approximation.[30] The
result of Eq. 70 violates our intuition that longitudinal gauge bosons don’t couple
to massless fermions. However, the integral over dθ picks out the θ → 0 region and
hence the subleading term in the polarization tensor of Eq. 61.
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It is now straightforward to compute the rates for processes involving WW scat-
tering. The hadronic cross section can be written in terms of a luminosity of W ’s in
the proton,

σpp→WW→X(s) =
∫ 1

τmin

dτ
dL

dτ
|pp/WW σWW→X(τs) (71)

where the luminosities are defined:

dL

dτ
|pp/WW =

∑
ij

∫ 1

τ

dτ ′

τ ′

∫ 1

τ ′

dx

x
fi(x)fj

(
τ ′

x

)
dL

dζ
|qiqj/WW

dL

dτ
|qq/WW =

∫ 1

τ

dx

x
fq/W (x)fq/W

(
τ

x

)
. (72)

(fi(x) are the quark distribution functions in the proton and ζ ≡ τ/τ ′). Of course this
entire derivation can also be performed for Z bosons. In addition, the luminosities
of Eq. 72 can be trivially adapted to find the distribution of gauge bosons in the
electron.[33]

In Fig. 23 we show the luminosity of transverse and longitudinal gauge bosons
in the proton at the LHC. It is interesting to note that the transverse luminosity
is several orders of magnitude larger than the longitudinal luminosity due to the
enhancement from the logarithm in fTq/W , as can be seen from Eq. 70 . However,
because the coupling of longitudinal gauge bosons to a heavy Higgs boson and to
heavy fermions9 is enhanced the dominant contribution to a physical process is often
from longitudinal gauge boson scattering.

The effective W approximation is particularly useful in models where the elec-
troweak symmetry breaking is due not to the Higgs mechanism, but rather to some
strong interaction dynamics (such as technicolor models). In these models one typ-
ically estimates the strengths of the 3 and 4 gauge boson couplings due to the new
physics. These interactions can then be folded into the luminosity of gauge bosons in
the proton (or the electron) to get estimates of the size of the new physics effects.

4.2 Does the Effective W approximation Work?

It is interesting to ask if QCD effects spoil the effective W approximation.[34] Di-
agrams of the sort shown in Fig. 24 for example cannot be calculated within the
context of the effective W approximation. The diagram of Fig. 24a gives a contri-
bution to the cross section of O(αs) which is proportional to Tr(TA) = 0. Most of
the remaining contributions to the QCD corrections (Figs. 24b and c) can be ab-
sorbed in the definition of the structure functions to next to leading order. It has
been demonstrated by explicit calculation that the QCD corrections to the effective
W approximation are small, of order 10%.[35]

We turn now to a discussion of Higgs boson production from vector boson fusion
and compare results obtained with and without the effective W approximation. In

9For heavy fermions, the ψψWL coupling is proportional to Mf/MW .
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the effective W approximation,

σ(pp→ H) =
16π2

M3
H

Γ(H →W+W−)τ
dL

dτ
|pp/WW . (73)

A heavy Higgs boson will quickly decay into W+W− pairs with a width

Γ(H →W+W−) ∼ 2Γ(H → ZZ) ∼
GFM

3
H

8
√

2π
. (74)

As the Higgs mass approaches a TeV, its mass becomes comparable to its width. A
useful form to remember is that summed over W±, Z,

Γ(H → V V ) ∼
M3

H

2
(TeV units). (75)

Therefore we cannot consider simply Higgs production for a heavy Higgs boson, but
must consider the W+W− or ZZ final state where the Higgs boson contributes to an
s- channel resonance. All of the diagrams contributing to V V → V V scattering must
be included in order to obtain a gauge invariant result.

There is an extensive literature demonstrating the validity of the effective W
approximation at the SSC and we discuss the relevant physics points here.10 In
Fig. 25, we show the contribution of W+W− and ZZ scattering to the final state
ZZ for both longitudinal and transverse gauge boson intermediate states through
the mechanism of Fig. 19 . The Feynman diagrams contributing to the process
W+W− → ZZ are shown in Fig. 26. A similar set of diagrams contributes to ZZ →
ZZ. It is clear that except for MZZ near the Higgs pole, it is a poor approximation
to keep only the longitudinal modes. Both transverse and longitudinal gauge bosons
contribute to the physical amplitude.

We can also investigate whether it makes sense to include only the s-channel Higgs
exchange diagram. From Fig. 27 we can see that this is a poor approximation except
for MWW near the Higgs boson mass. This figure also includes the contribution to
W+W− production from the direct scattering qq → W+W−. This process is often
called the background to Higgs production and is much larger than the contribution
from W+W− scattering. As the Higgs boson becomes increasingly massive, its width
becomes wider and the tiny Higgs bump shown in Fig. 27 becomes impossible to
observe.

Higgs boson production through vector boson fusion can of course be computed
numerically without the use of the effective W approximation. In Fig. 28 we show
a comparison of the exact numerical calculation for the process pp → WW → ZZ

compared with that derived from the effective W approximation. The agreement is
excellent and the effective W approximation is accurate to within a factor of two even
far from the Higgs pole.[37, 38] This did not have to be the case since the effective W

10Once the validity of the effective W approximation was established for the SSC, theorists didn’t
bother to redo the calculations for the LHC!
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approximation does not contain diagrams where the W is radiated off the incoming or
outgoing quark lines (see Fig. 29). We conclude from this series of plots, (Figs. 25, 27
and 28), that the effective W approximation can be used with confidence even away
from the Higgs pole if both transverse and longitudinal gauge boson contributions and
if all scattering diagrams (not just s− channel Higgs exchange) are included. The
most important use of the effective W approximation is the study of very massive,
strongly interacting Higgs bosons, which we consider in Section 5.

4.3 Searching for a Heavy Higgs Boson at the LHC

We now have the tools necessary to discuss the search for a very massive Higgs boson.
The various production mechanisms contributing to Higgs production at the LHC are
shown in Fig. 30. For MH < 800 GeV the dominant production mechanism at the
LHC is gluon fusion, as discussed in Section 3.1. For heavier Higgs masses, the WW

fusion mechanism becomes important. Other mechanisms, such as gg → ttH, are
quite small at the LHC.[39] It is obvious from Fig. 30 that searching for a Higgs
boson on the TeV mass scale will be extremely difficult. For example, a 700 GeV
Higgs boson has a cross section near 1 pb leading to around 105 events/LHC year.
The cleanest way to see these events is the so-called “gold-plated” decay channel,

H → ZZ → l+l−l+l−. (76)

The lepton pairs will reconstruct to the Z mass and the 4 lepton invariant mass will
give the Higgs mass. Since the branching ratio, Z → e+e− + µ+µ− is ∼ .06 the
number of events for a 700 GeV Higgs is reduced to around 360 four lepton events
per year. Since this number will be further reduced by cuts to separate the signal
from the background, it is clear that this channel will run out of events as the Higgs
mass becomes heavier.[21]

In Fig. 31, we show a Monte Carlo simulation of the capabilities of the ATLAS
detector at the LHC to observe a Higgs boson with mass MH = 800 GeV through
the 4 lepton decay channel.[18] The upper curve shows all of the events including the
background from ZZ continuum production. A series of kinematic cuts is applied
until the lower curve is reached, where the Higgs bump can be seen. The ATLAS
collaboration claims that they will be able to discover the Higgs boson in the mass
region 130 < MH < 800 GeV in the 4 lepton channel. (Similar results are found by
the CMS collaboration.[19]).

In order to look for still heavier Higgs bosons, one can look in the decay channel,

H → ZZ → l+l−νν. (77)

Since the branching ratio, Z → νν ∼ 20 %, this decay channel has a larger rate than
the four lepton channel. However, the price is that because of the neutrinos, events
of this type cannot be fully reconstructed. An example of this signal is shown in Fig.
32. This channel extends the Higgs mass reach of the LHC slightly.
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Another idea which has been proposed is to use the fact that events coming from
WW scattering have outgoing jets at small angles, whereas the WW background
coming from qq → W+W− does not have such jets.[41] Additional sources of back-
ground to Higgs detection such as W+ jet production have jets at all angles. It is
not yet clear whether this idea will be useful in the search for a heavy Higgs.

In this section and in Section 3.3, we have seen that the LHC will have the
capability to observe the Higgs boson in the mass region from 100 < MH < 800 GeV .
We now return to the Goldstone boson sector of the theory in an attempt to learn
something about the Higgs boson in the regime where it is too heavy to be observed
at the LHC.

5 Strongly Interacting Higgs Bosons

We can see from the Feynman rules of Fig. 4 that as the Higgs boson becomes
heavy, its self interactions become large and it becomes strongly interacting. For
MH > 1.4 TeV , the total Higgs boson decay width is larger than its mass and it no
longer makes sense to think of the Higgs boson as a particle. This regime can most
easily be studied by going to the Goldstone boson sector of the theory. In Feynman
gauge, the three Goldstone bosons, ω±, z, have mass Mω,z = MW,Z and have the
interactions,[42]

V =
M2

H

2v
H
(
H2 + Z2 + 2ω+ω−

)
+
M2

H

8v2

(
H2 + z2 + 2ω+ω−

)2

. (78)

The Feynman rules corresponding to Eq. 78 are given in Fig. 33.
Calculations involving only the Higgs boson and the Goldstone bosons are easy

since they involve only scalars. For example the amplitude for ω+ω− → ω+ω−[43]
can be found from the Feynman diagrams of Fig. 34:

A(ω+ω− → ω+ω−) = −
M2

H

v2

(
s

s−M2
H

+
t

t−M2
H

)
, (79)

where s, t, u are the Mandelstam variables in the ω+ω− center of mass frame. It is
instructive to compare Eq. 79 with what is obtained by computingW+

LW
−
L → W+

LW
−
L

using real longitudinally polarized gauge bosons and extracting the leading power of
s from each diagram[44]:

A(W+
LW

−
L →W+

LW
−
L ) = −

1

v2

{
−s− t+ 2M2

Z +
2t

s

(
M2

Z − 4M2
W

)
+

2M2
Zs

t−M2
Z

−8 sin2 θWM
2
W

(
M2

Zs

t(t−M2
Z)

)
+

s2

s−M2
H

+
t2

t−M2
H

}
.

(80)

From Eqs. 79 and 80 we find an amazing result,

A(W+
LW

−
L → W+

LW
−
L ) = A(ω+ω− → ω+ω−) +O

(
M2

W

s

)
. (81)
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This result means that instead of doing the complicated calculation with real gauge
bosons, we can instead do the easy calculation with only scalars if we are at an energy
far above the W mass and are interested only in those effects which are enhanced by
M2

H . (The interactions of the transverse gauge bosons are O(g2) and have no M2
H

enhancement.) This is a general result and has been given the name of the electroweak
equivalence theorem.[45]

The formal statement of the electroweak equivalence theorem is that

A(V 1
LV

2
L ....V

N
L → V 1

LV
2
L ....V

N ′

L ) = (i)N (−i)N
′
A(ω1ω2...ωN → ω1ω2...ωN ′) +O

(
M2

V

s

)
,

(82)
where ωi is the Goldstone boson corresponding to the longitudinal gauge boson, V i

L.
In other words, when calculating scattering amplitudes of longitudinal gauge bosons
at high energy, we can replace the external longitudinal gauge bosons by Goldstone
bosons. A formal proof of this theorem can be found in Ref. [45].

The electroweak equivalence theorem is extremely useful in a number of appli-
cations. For example, to compute the radiative corrections to H → W+W−[46]
or to W+

LW
−
L → W+

LW
−
L [29], the dominant contributions which are enhanced by

M2
H/M

2
W can be found by computing the one loop corrections to H → ω+ω− and

to ω+ω− → ω+ω− which involve only scalar particles. Probably the most powerful
application of the electroweak equivalence theorem is, however, in the search for the
physical effects of strongly interacting gauge bosons which we turn to now.

5.1 MH →∞, The Non-Linear Theory

So far we have considered searching for the Higgs boson in various mass regimes. In
this section we will consider the consequences of taking the Higgs boson mass much
heavier than the energy scale being probed[49]. In fact, we will take the limit MH →
∞ and assume that the effective Lagrangian for electroweak symmetry breaking is
determined by new physics outside the reach of future accelerators such as the LHC.
Since we do not know the full theory, we must build the effective Lagrangian out of all
operators consistent with the unbroken symmetries. In particular, we must include
operators of all dimensions, whether or not they are renormalizable. In this way we
construct the most general effective Lagrangian that describes electroweak symmetry
breaking.

To specify the effective Lagrangian, we must first fix the pattern of symmetry
breaking. We will assume that the global symmetry in the scalar sector of the model
is SU(2)L × SU(2)R as in the minimal Standard Model, (see for example, Eq. 78).
In this case, the Goldstone bosons can be described in terms of the field[47]

Σ ≡ e
iω·τ
v . (83)

This is reminiscent of the Abelian Higgs model where we took,

Φ =
1
√

2
e
iχ
v (H + v). (84)
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Under the global symmetry the Σ field transforms as,

Σ→ L†ΣR. (85)

It is straightforward to write down the most general SU(2)L×U(1)Y gauge invariant
Lagrangian which respects the global symmetry of Eq. 85 and has no more than 2
derivatives acting on the Σ field,

L =
v2

4
DµΣ†DµΣ−

1

2
Tr
(
Ŵ µνŴµν

)
−

1

2
Tr
(
B̂µνB̂

µν
)
, (86)

where the covariant derivative is given by,

DµΣ = ∂µΣ +
i

2
gŴ i

µτ
iΣ−

i

2
g′B̂µΣτ3. (87)

The gauge field kinetic energies are now matrices:

Ŵµν ≡
1

2

(
∂νWµ − ∂µWν −

i

2
g[Wµ,Wν ]

)
B̂µν =

1

2

(
∂νBµ − ∂µBν

)
τ3 (88)

with Wν ≡W i
ν · τi. We will also assume a custodial SU(2)C symmetry.[48] This is the

symmetry which forces ρ = M2
W/(M

2
Z cos θW ) = 1. The pattern of global symmetry

breaking is then SU(2)L × SU(2)R → SU(2)C . In unitary gauge, Σ = 1 and it is
easy to see that Eq. 86 generates mass terms for the W and Z gauge bosons. The
Lagrangian of Eq. 86 is the Standard Model with MH →∞.

Using the Lagrangian of Eq. 86 it is straightforward to compute Goldstone boson
scattering amplitudes such as[50]

A(ω+ω− → zz) =
s

v2
≡ A(s, t, u) (89)

which of course agree with those found in the Standard Model when we takeM2
H >> s.

Because of the custodial SU(2)C symmetry, the various scattering amplitudes are
related:

A(ω+z → ω+z) = A(t, s, u)

A(ω+ω− → ω+ω−) = A(s, t, u) +A(t, s, u)

A(ω+ω+ → ω+ω+) = A(t, s, u) +A(u, t, s)

A(zz → zz) = A(s, t, u) +A(t, s, u) +A(u, s, t). (90)

Using the electroweak equivalence theorem, the Goldstone boson scattering ampli-
tudes can be related to the amplitudes for longitudinal gauge boson scattering. The
effective W approximation can then be used to find the physical scattering cross
sections for hadronic and e+e− interactions.

25



The relationships of Eq. 90 were discovered by Weinberg[50] over 20 years ago
for the case of π − π scattering.11 Amplitudes which grow with s are a disaster for
perturbation theory since eventually they will violate perturbative unitarity as we
will discuss in Sec. 6.1. Of course, this simply tells us that there must be some new
physics at high energy.

Eq. 86 is a non-renormalizable effective Lagrangian which must be interpreted as
an expansion in powers of s/Λ2, where Λ can be taken to be the scale of new physics
(say MH in a theory with a Higgs boson). At each order in the energy expansion
new terms will be generated which will cancel the singularities generated by the order
below. To O(s2), the infinities which arise at one loop can all be absorbed by defining
renormalized parameters, Li(µ). The coefficients thus depend on the renormalization
scale µ. At O(s2/Λ4) we have the interaction terms,

L =
L1

16π2

[
Tr

(
DµΣ†DµΣ

)]2

+
L2

16π2

[
Tr

(
DµΣ†DνΣ

)]2

−
igL9L

16π2
Tr
(
Ŵ µνDµΣDνΣ

†
)
−
ig′L9R

16π2
Tr
(
B̂µνDµΣ†DνΣ

)
+
gg′L10

16π2
Tr
(

ΣB̂µνΣ†Ŵµν

)
. (91)

This is the most general SU(2)L×U(1)Y gauge invariant set of interactions ofO(1/Λ4)
which preserves the custodial SU(2)C . The coefficients, Li have information about the
underlying dynamics of the theory. By measuring the various coefficients one might
hope to learn something about the mechanism of electroweak symmetry breaking even
if the energy of an experiment is below the scale at which the new physics occurs.

The L10 interaction contributes to non-Standard Model 2- and 3-gauge boson
interactions. New physics at LEP is often parameterized in terms of the contributions
to the gauge boson 2-point functions, (the so-called “oblique corrections”). In a theory
without a custodial SU(2)C symmetry, there are three possible interactions, often
called S,T, and U.[55] Since we have assumed a custodial SU(2)C symmetry, there is
only one interaction contributing to non-Standard Model 2- gauge boson interactions
and we have

L10(MZ) = −πS. (92)

The L10 interaction contributes to γ−Z mixing and is limited by precision electroweak
measurements at LEP:[54, 57]

−1.1 < L10(MZ) < 1.8 (93)

at the 90 % confidence level from measurements of the total Z width. The L9L, L9R

and L10 coefficients all contribute to 3 gauge boson interactions, while the L1, L2, L9L,
and L9R interactions contribute to 4 gauge boson interactions. Within this framework

11There is an exact analogy between ππ scattering and W+
LW

−
L scattering with the replacement

fπ → v.
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the 2,3, and 4-point gauge boson interactions are related by the gauge invariance of
Eq. 91.

Effects of the new interactions can be looked for in e+e− interactions, as in Fig.
35. At high energy, there is a delicate cancellation between t- channel ν exchange and
s- channel γ and Z exchange in the process e+e− → W+W−.[51] If this cancellation
is spoiled there is a contribution to the cross section which grows with energy.[53]
The Lagrangian of Eq. 91 contributes terms which grow with s to the 3 gauge boson
vertices shown in Fig. 35 which is potentially measurable at LEPII. Unfortunately,
these effects tend to be rather small in all models which have been considered.

The effects of the non-standard model couplings of Eq. 91 can also be searched
for in hadron machines which are sensitive to both the three and four gauge boson
vertices.[56, 59, 60, 61] To study strong interactions with the Lagrangian of Eq. 91
one must use the effective W approximation to get results for pp scattering. This has
the result that the calculation has a rather limited region of validity,

M2
W < ŝ < Λ2. (94)

In Fig. 36, we show the effects at the LHC of turning on small values of the Li as
compared to the lowest order result and see that the effects are quite small.12 We
define a signal as “observable” if it induces a change in the integrated cross section
of greater than 50%, which implies that the LHC will be sensitive to | Li |> 1. (More
precise values can be found in Ref. [59, 60].)

5.2 Coefficients of New Interactions in a Strongly Interacting
Symmetry Breaking Sector

It is instructive to estimate the size of the Li coefficients in typical theories. Using the
effective Lagrangian approach this can be done in a consistent way. We first consider
a model in which we couple the Goldstone bosons to a scalar, isoscalar resonance like
the Higgs boson. We assume that the Li are dominated by tree-level exchange of the
scalar boson. By integrating out the scalar particle and matching coefficients at the
scale MH , we find[58]

L1(µ) =
64π3

3

ΓHv
4

M5
H

+
1

24
log
(
M2

H

µ2

)

L2(µ) = L9L(µ) = L9R(µ) = −L10(µ) =
1

12
log
(
M2

H

µ2

)
, (95)

where ΓH is the width of the scalar into Goldstone bosons. If we naively take

ΓH =
3M3

H

32πv2
(96)

12The W+W+ channel is advantageous in the search for strongly interacting symmetry breaking
effects since there is no qq background.
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as in the Standard Model, we find for MH = 2 TeV and µ = 1.5 TeV , L1 = .33 and
L2 = .01.

We can also consider a second model for the Li and assume that the coefficients
are dominated by tree-level exchange of a ρ-like particle with spin and isospin one.
Integrating out the ρ and matching coefficients at the scale Mρ we find[58]

L1(µ) =
1

24

[
−

96π2f 2

M2
ρ

+ log
(M2

ρ

µ2

)]

L2(µ) =
1

12

[
48π2f 2

M2
ρ

+ log
(M2

ρ

µ2

)]

L9L(µ) = L9R(µ) =
1

12

[
96π2fFρ
M2

ρ

+ log
(M2

ρ

µ2

)]

L10(µ) = −
1

12

[48π2F 2
ρ

M2
ρ

+ log
(M2

ρ

µ2

)]
(97)

where the constant f is related to the width Γρ,

Γρ =
1

48π

f 2

v4
M3

ρ (98)

and Fρ is defined by
〈0 | V i

µ | ρ
k(p)〉 = δikεµFρMρ. (99)

We can use large N scaling arguments to estimate f and Fρ. For Mρ = 2 TeV and
µ = 1.5 TeV , we find L1 = −.31, L2 = .38, L9 = 1.4 and L10 = −1.5. Since we
estimated that the LHC will be sensitive to | Li |< 1, we see that the LHC will
indeed probe electroweak symmetry breaking in the TeV region.

One can estimate the amount of time it would take to see a signal of a strongly
interacting electroweak symmetry breaking sector at the LHC. The signal has no
resonance shape and will be a small excess of events over that predicted from the
lowest order Lagrangian of Eq. 86. For example, a model with the Li having values
corresponding to a 2.5 TeV techni-rho would only be observable at the LHC with
five years of running! (and then there would be only 14 signal events in the optimal
W+Z channel!).[61] It is clear that this is an extremely difficult way in which to look
for evidence of the Higgs boson.

6 Indirect Limits on the Higgs Boson Mass

In the first sections of this report we have systematically discussed how to search
experimentally for the Higgs boson in the various mass regimes. We now take a
different tack and ask what we can learn about the Higgs boson through indirect
measurements
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6.1 Unitarity

In the previous section we discussed looking for strongly interacting Higgs bosons
through effects which grow with the energy. However, models which have cross sec-
tions rising with s will eventually violate perturbative unitarity. To see this we
consider 2→ 2 elastic scattering. The differential cross section is

dσ

dΩ
=

1

64π2s
| A |2 . (100)

Using a partial wave decomposition the amplitude can be written as

A = 16π
∞∑
l=0

(2l + 1)Pl(cos θ)al (101)

where al is the spin l partial wave and Pl are the Legendre polynomials. The cross
section can now be written as

σ =
8π

s

∞∑
l=0

∞∑
l′=0

(2l + 1)(2l′ + 1)ala
∗
l

·
∫ 1

−1
d cos θPl(cos θ)Pl′(cos θ)

=
16π

s

∞∑
l=0

(2l + 1) | al |
2 (102)

where we have used the fact that the Pl’s are orthogonal. The optical theorem gives,

σ =
1

s
Im

[
A(θ = 0)

]
=

16π

s

∞∑
l=0

(2l + 1) | al |
2 . (103)

This immediately yields the unitarity requirement which is illustrated in Fig. 37.

| al |
2= Im(al). (104)

From Fig. 37 we see that one statement of unitarity is the requirement that

| Re(al) |<
1

2
. (105)

As a demonstration of unitarity restrictions we consider the scattering of longitu-
dinal gauge bosons, W+

LW
−
L → W+

LW
−
L , which can be found to O(M2

W/s) from the
Goldstone boson scattering of Fig. 34. We begin by constructing the J = 0 partial
wave in the limit M2

W << s from Eq. 79,

a0
0(ω+ω− → ω+ω−) ≡

1

16πs

∫ 0

−s
| A | dt

= −
GFM

2
H

8
√

2π

[
2 +

M2
H

s−M2
H

−
M2

H

s
log
(

1 +
s

M2
H

)]
. (106)
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If we go to very high energy, s >> M2
H , then Eq. 106 has the limit

a0
0(ω+ω− → ω+ω−) −→s>>M2

H
−
GFM

2
H

4π
√

2
. (107)

Applying the unitarity condition, | Re(a0
0) |< 1

2
gives the restriction

MH < 860 GeV. (108)

It is important to understand that this does not mean that the Higgs boson cannot be
heavier that 860 GeV , it simply means that for heavier masses perturbation theory is
not valid. By considering coupled channels, a slightly tighter bound than Eq. 108 can
be obtained. The Higgs boson therefore plays a fundamental role in the theory since
it cuts off the growth of the partial wave amplitudes and makes the theory unitary.

We can apply the alternate limit to Eq. 106 and take the Higgs boson much heavier
than the energy scale. In this limit[62]

a0
0(ω+ω− → ω+ω−) −→s<<M2

H

GF s

16π
√

2
. (109)

Again applying the unitarity condition we find,

√
sc < 1.8 TeV (110)

We have used the notation sc to denote s(critical), the scale at which perturbative
unitarity is violated. Eq. 110 is the basis for the oft-repeated statement,“ There
must be new physics on the TeV scale”. Eq. 110 is telling us that without a Higgs
boson, there must be new physics which restores perturbative unitarity somewhere
below an energy scale of 1.8 TeV .

6.2 Triviality

Bounds on the Higgs boson mass have also been deduced on the grounds of triviality.[63]
The basic argument goes as follows: Consider a pure scalar theory in which the po-
tential is given by13

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 (111)

where the quartic coupling is

λ =
M2

H

2v2
. (112)

This is the scalar sector of the Standard Model with no gauge bosons or fermions.
The quartic coupling runs with renormalization scale Q:

dλ

dt
=

3λ2

4π2
, (113)

13µ2 < 0, λ > 0.
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where t ≡ log(Q2/Q2
0) and Q0 is some reference scale. (The reference scale is often

taken to be v in the Standard Model.) Eq. 113 is easily solvable,

1

λ(Q)
=

1

λ(Q0)
−

3

4π2
log
(
Q2

Q2
0

)
,

λ(Q) =
λ(Q0)[

1− 3λ(Q0)
4π2 log(Q

2

Q2
0
)
] . (114)

From Eq. 114 we see that λ(Q) blows up as Q → ∞ (called the Landau pole).
Regardless of how small λ(Q0) is, λ(Q) will eventually become infinite at some large
Q. Alternatively, λ(Q0)→ 0 as Q→ 0 with λ(Q) > 0. Without the λΦ4 interaction
of Eq.111 the theory becomes a non-interacting theory at low energy, termed a trivial
theory. Of course, this picture is valid only if the one loop evolution equation of Eq.
113 is an accurate description of the theory at large λ. For large λ, however, higher
order or non-perturbative corrections to the evolution equation must be included to
determine if triviality really is a problem for the Standard Model.

There are many variations on the triviality theme which attempt to place bounds
on the Higgs mass and we will describe several of them here. Suppose we consider
a theory with only scalars and assume that there is some new physics at a scale
Λ < Mpl. Then if we take λ(Λ) to have its maximum value (∞) and evolve the
coupling down to the weak scale (v) we will find the maximum allowed value of the
Higgs mass,

λ(v) =
M2

H(max)

2v2
=

4π2

3 log(Λ2

v2 )
. (115)

Scenarios like this tend to get bounds on the order of MH < O(400− 1000 GeV ) as
illustrated in Fig. 38. Since this picture clearly only makes sense for MH < Λ, we
have also shown the Λ = Mmax

H curve in Fig. 38 and we see that for Λ < 1 TeV , this
procedure for limiting the Higgs boson mass breaks down. However, this breakdown
leads to the exciting possibility of new physics in the TeV region which should be
experimentally accessible at the LHC. Note that as Λ → ∞, Mmax

H quickly reaches
its asymptotic value since the sensitivity of the limit to the cutoff is only logarithmic.
If we apply an arbitrary cutoff of (Λcut/MH) > 2π, we find a limit MH < 930 GeV
from Eq. 115.

Lattice gauge theory calculations have used similar techniques to obtain a bound
on the Higgs mass.[64] One criticism of the previous bounds could be that it makes
no sense to use one loop perturbation theory in the limit λ→∞. Non-perturbative
lattice gauge theory calculations overcome this deficit. As above, they consider a
purely scalar theory and require that the scalar self coupling λ remain finite for all
scales less than 2πMH . This gives a limit[65]

MH(lattice) < 640 GeV. (116)

The lattice results are relatively insensitive to the value of the cutoff chosen, as can
be seen in Fig. 39. It is interesting that all of the limits based on the running of the
pure scalar theory tend to be in the 1 TeV range, as was the unitarity bound.
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Of course everything we have done so far is for a theory with only scalars. The
physics changes dramatically when we couple the theory to fermions and gauge
bosons. Since the Higgs coupling to fermions is proportional to the Higgs boson
mass, the only relevant fermion is the top quark. When we include the top quark and
the gauge bosons, Eq. 113 becomes[66]

βλ ≡
dλ

dt
=

1

16π2

[
12λ2 + 6λh2

t − 3h4
t −

3

2
λ(3g2 + g′ 2) +

3

16
(2g4 + (g2 + g′ 2)2)

]
(117)

where ht ≡
√

2MT /v. The important physics point is the opposite signs between the
various terms. For a heavy Higgs boson , λ > ht, g, g

′, and

dλ

dt
∼

λ

16π2

[
12λ+ 6h2

t −
3

2
(3g2 + g′ 2)

]
. (118)

There is a critical value of λ which depends on the top quark mass,

λc ≡
1

8
(3g2 + g′ 2)−

h2
t

2
(119)

for which there is no evolution of the scalar coupling constant.[67] If MH > M c
H ≡√

2λcv then the quartic coupling blows up and the theory is non-perturbative. If we
require that the theory be perturbative (i.e., the Higgs quartic coupling be finite) at
all energy scales below some unification scale (∼ 1016 GeV ) then an upper bound on
the Higgs mass is obtained as a function of the top quark mass. For MT = 170 GeV
this bound is MH < 170 GeV . [67] If a Higgs boson were found which was heavier
than this bound, it would require that there be some new physics below the unification
scale. We see that the inclusion of the top quark into the evolution equations for the
scalar coupling has changed the bounds on the Higgs mass considerably. Of course
this analysis relies on the use of the one-loop evolution equations. As yet, there is no
lattice bound on the Higgs mass which incorporates a heavy top quark mass.

6.3 Vacuum Stability

A bound on the Higgs mass can also be derived by the requirement that spontaneous
symmetry breaking actually occurs;[68] that is,

V (v) < V (0). (120)

For small λ, Eq. 117 can be solved to find

λ(Q) = λ(Q0) + βλ log
(
Q2

Q2
0

)
, (121)

where the small λ limit of βλ can be found from Eq. 117. If we substitute this into
the potential, we find

V (Φ) ∼ µ2Φ†Φ + λ(Q0)(Φ†Φ)2 + βλ(Φ
†Φ)2 log

(
Q2

Q2
0

)
. (122)
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We can find the minimum of the potential by taking

∂V

∂Φ
|Φ=v/

√
2= 0. (123)

Taking the second derivative of the potential and substituting in the requirement of
Eq. 123 we find the Higgs mass

M2
H =

1

2

∂2V

∂Φ2
|φ=v/

√
2 . (124)

The requirement of Eq. 120 that spontaneous symmetry breaking occurs gives the
famous Coleman-Weinberg bound,[68]

M2
H > βλv

2 =
3

16π2v2

(
2M4

W +M4
Z − 4M4

T

)
. (125)

For MT > 78 GeV , βλ < 0 and the potential turns over and is unbounded below. Of
course perturbation theory breaks down for Φ→∞ and the one loop results are not
valid.

A more careful analysis[69] using the 2 loop renormalization group improved effec-
tive potential14 and the running of all couplings gives the requirement from vacuum
stability,[70]15

MH(GeV ) > 132 + 2.2(MT − 170)− 4.5
(
αs − .117

.007

)
. (126)

We see that when λ is small (a light Higgs boson) radiative corrections become
important and lead to a lower limit on the Higgs boson mass from the requirement
of vacuum stability. If λ is large (a heavy Higgs boson) then unitarity and triviality
arguments lead to an upper bound on the Higgs mass.

6.4 Bounds from Electroweak Radiative Corrections

The Higgs boson enters into one loop radiative corrections in the standard model and
we might hope that precision electroweak measurements would give some bound on
the Higgs mass. For example the ρ parameter gets a contribution from the Higgs
boson[71]16

ρ = 1−
11g2

96π2
tan2 θW log

(
MH

MW

)
. (127)

In fact it is straightforward to demonstrate that at one loop all electroweak parameters
have at most a logarithmic dependance on MH .[49] This fact has been glorified by

14The renormalization group improved effective potential sums all potentially large logarithms,
log(Q2/Q2

0).
15This limit requires that the vacuum be stable up to very large scales, ∼ 1015 GeV .
16This result is scheme dependent. Here ρ ≡ M2

W/M
2
Z cos2 θW (MW ), where cos θW is a running

parameter calculated at an energy scale of MW .
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the name of the “screening theorem”.[72] In general, electroweak radiative corrections
involving the Higgs boson take the form,

g2
(

log
MH

MW

+ g2M
2
H

M2
W

...

)
. (128)

That is, effects quadratic in the Higgs mass are always screened by an additional
power of g relative to the lower order logarithmic effects and so radiative corrections
involving the Higgs boson can never be large.[73] We can demonstrate this in terms
of the non-linear model discussed in Section 5.1 where the Higgs boson was removed
from the theory. One loop corrections to this theory give divergences which can
correctly be interpreted as the log(MH) terms of the Standard Model loops.

From precision measurements at LEP of electroweak observables there is only the
very weak bound on the Higgs boson mass,[74]

MH < 780 GeV (90% confidence level), (129)

although χ2 fits to the data tend to prefer light Higgs masses. From the LEP data
alone, the minimum of the χ2 fit to the top quark mass and the Higgs mass is at
MH = 60 GeV, while if the CDF measurement of the top quark mass is included the
χ2 minimum occurs at MH = 120 GeV .

7 Problems with the Higgs Mechanism

In the preceeding sections we have discussed many features of the Higgs mechanism.
However, many theorists firmly believe that the Higgs mechanism cannot be the entire
story behind electroweak symmetry breaking. The primary reasons are:

• The Higgs sector of the theory is trivial.

• The Higgs mechanism doesn’t explain why v = 246 GeV .

• The Higgs mechanism doesn’t explain why fermions have the masses they do.

• Loop corrections involving the Higgs boson are quadratically divergent and
counterterms must be adjusted order by order in perturbation theory to can-
cel these divergences. This fine tuning is considered by most theorists to be
unnatural.

In light of the many objections to the simplest version of the Higgs mechanism
theorists have considered several alternatives to the Higgs mechanism for electroweak
symmetry breaking. One proposal, that the electroweak symmetry be broken dy-
namically by a mechanism such as technicolor has been discussed at this school by
Appelquist.[75] Another alternative to the standard model Higgs mechanism is that
the Standard Model becomes supersymmetric. The electroweak symmetry is still bro-
ken by the Higgs mechanism, but the quadratic divergences in the scalar sector are
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cancelled automatically because of the expanded spectrum of the theory and so the
model is no longer considered to be unnatural. In the next section, we will briefly
discuss the phenomenology of the Higgs bosons occurring in supersymmetric models
and emphasize the similarity of much of the phenomenology to that of the Stan-
dard Model Higgs. The theoretical underpinning of supersymmetric models has been
presented at this school by Ramond.[76]

8 Higgs Bosons in Supersymmetric Models

In the standard (non-supersymmetric) model of electroweak interactions, the fermion
masses are generated by Yukawa terms in the Lagrangian

L = −λdQLΦdR − λuQLΦcuR + h.c. (130)

In a supersymmetric theory however, a term proportional to Φc is not allowed17 and
so another scalar doublet must be added in order to give the τ3 = 1 components of
the SU(2) fermion doublets mass. The mechanism of the symmetry breaking is very
similar to that of the standard model except there are two Higgs doublets.[76, 77]
Before the symmetry breaking there are two complex scalar SU(2) doublets, Φ1 and
Φ2, for a total of 8 degrees of freedom. When the spontaneous symmetry breaking
occurs, each scalar obtains a VEV, v1 and v2, and the theory is described in terms of
the ratio of VEVs,

tanβ ≡
v2

v1
. (131)

In order that the W mass have the observed value we have the restriction, v ≡√
v2

1 + v2
2 = 246 GeV .

After the spontaneous symmetry breaking the W± and Z get their longitudinal
components as in the Standard Model and there are 5 remaining degrees of freedom.
Supersymmetric models, therefore, have 5 physical Higgs bosons: 2 neutral scalars,
H1 and H2, 2 charged scalars,H± , and a pseudoscalar, A0. Because of the super-
symmetry, the scalar potential has only one free parameter (unlike the case of the
general two Higgs doublet model where the scalar potential depends on 6 unknown
parameters[78]). The masses of the Higgs scalars can thus be expressed in terms of
two parameters which are conventionally taken to be the mass of the pseudoscalar,
MA, and tan β.18 This gives relationships between the masses of the SUSY Higgs par-
ticles. The tree level relationships between the SUSY scalar masses, however, receive
large radiative corrections at one-loop of O(M4

T /M
4
W ).[79] In Fig. 40, we show the

mass of the lightest neutral Higgs boson in terms of tanβ and MA.[80] There is an
upper bound to the mass of the lightest Higgs boson which depends on the top quark
mass through the radiative corrections,

M2
H1
< M2

Z +
3GF√

2π2
M4

T log
(

1 +
m̃2

M2
T

)
(132)

17Φc cannot be written as a chiral superfield.
18Remember that in the Standard Model, there was only one free parameter, MH .
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where m̃ is the scale associated with the supersymmetry breaking, usually taken to
be ∼ 1 TeV . For MT ∼ 170 GeV ,[79]

MH1 < 120 GeV. (133)

Hence in a SUSY model, the Higgs mechanism can be excluded experimentally if a
Higgs boson is not found below this mass scale. This is in direct contrast to the
Standard Model where there is no prediction for the Higgs boson mass.

There are several relevant features for SUSY phenomenology. The first is that the
couplings of the neutral scalars to vector bosons (V = W±, Z) are suppressed from
those of the standard model

g2
H1V V

+ g2
H2V V

= g2
HV V (SM) (134)

where gHV V is the coupling of the Higgs boson to vector bosons. Because of this
sum rule, the WW scattering production mechanism tends not to be as important in
SUSY models as in the Standard Model.

The couplings of the lightest Higgs boson to the Z are shown in Fig. 41. The
processes e+e− → ZH1 and e+e− → A0H1 can be seen from Fig. 41 to be comple-
mentary in a SUSY model: they cannot be simultaneously suppressed. Using the 2
modes the e+e− machines can cover the SUSY parameter space without holes. In Fig.
42 we show the range of parameter space which has been excluded by the ALEPH
experiment at LEP.[81] They find:

MH1 > 43 GeV

MA > 21 GeV. (135)

Of course for a given value of MH1 or MA there may be a stronger limit than Eq. 135.
The second important feature for the phenomenology of SUSY models is that

fermion couplings are no longer strictly proportional to mass. The neutral Higgs
boson couplings to fermions are:

LHff = −
gmd

2MW cosβ
dd

(
H2 cosα−H1 sinα

)
−

gmu

2MW sin β
uu

(
H2 sinα+H1 cosα

)
+
igmd tanβ

2MW

dγ5dA
0 +

igmu cot β

2MW

uγ5uA
0 (136)

where α is a mixing angle in the neutral Higgs sector,

H2 =
√

2
[
(ReΦ0

1 − v1) cosα + (ReΦ0
2 − v2) sinα

]
H1 =

√
2
[
−(ReΦ0

1 − v1) sinα+ (ReΦ0
2 − v2) cosα

]
(137)

At a hadron collider, the neutral SUSY higgs bosons can be searched for using
the same techniques as in the standard model. For most choices of the parameter

36



space, gluon fusion is the dominant production mechanism. In the Standard Model,
it was only the top quark contribution to gluon fusion which was important. In a
SUSY model, however, the coupling to the b quark can be important for small values
of cosβ, as can be seen from Eq. 136.

SUSY models have a rich particle spectrum in which to search for evidence of the
Higgs mechanism. The various decays such as Hi → γγ, H+ → l+ν, A0 → τ+τ−,
etc, are sensitive to different regions in the MA− tanβ parameter space. It takes the
combination of many decay channels in order to be able to cover the parameter space
completely with out any holes. Discussions of the capabilities of the LHC detectors to
experimentally observe evidence for the Higgs bosons of SUSY models can be found
in the ATLAS[18] and CMS[19] studies.

9 Conclusions

Our current experimental knowledge of the Higgs boson gives only the limits MH >
58 GeV found from direct searches and MH < 780 GeV from precision measurements
at the LEP experiments. The lower limit will be extended to a mass reach on the order
of 80 GeV at LEPII. From here, we must wait until the advent of the LHC for further
limits. Through the decay H → γγ and the production process pp → Zl+l−, the
LHC will probe the mass region between 100 < MH < 180 GeV . It is an important
question as to whether there will be a hole in the Higgs mass coverage between the
upper reach of LEPII and the lower reach of the LHC. Current ideas as to how to look
for a Higgs boson in this mass regime focus on the production mechanism, pp→ WH,
with H → bb. The efficiency of this technique, however, depends sensitively on the
capabilities of the LHC to do b tagging at a high luminosity. For the higher mass
region, 180 < MH < 800 GeV , the LHC will be able to see the Higgs boson through
the gold plated decay mode, H → ZZ → l+l−l+l−.

One of the important yardsticks for all current and future accelerators is their
ability to discover (or to definitively exclude) the Higgs boson of the Standard Model.
We hope that at the time of the LHC, we will be able to probe all mass scales up
to MH ∼ 800 GeV . If the Higgs boson is not found below this mass scale then we
are in the regime where perturbative unitarity has broken down and we are led to
the exciting conclusion that there must be new physics beyond the Standard Model
waiting to be discovered.
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